Statistical Methods: (BAGS 0113)

Lecture 4

GLA
University
Mathura

Lecture 4

Dr. Manoj Kumar

Assistant Professor
Department of Mathematics
Institute of Applied Sciences and Humanities GLA University Mathura-281406, India

Outline of Lecture 4

Lecture 4
GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4

- Graphic Presentations of Frequency Distrubutions.

Graphic Presentations of Frequency Distrubutions

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline o Lecture 4

Graphic
Presentations of Frequency Distrubutions

Histograms
Frequency
Polygons
Frequency
Curves

In this section we shall discuss how to present frequency distrubution graphically. Graphs present data in a two-dimensional picture. On the horizontal axis, we show the values of the variable. On the vertical axis, we mark the frequencies of the classes shown on the horizontal axis.
A frequency distrubution can be presented graphically in any of the following ways:

1. Histograms 2. Frequency Polygons
2. Frequency Curves 4. Ogives or Cumulative Frequency Curves

Graphic Presentations of Frequency Distrubutions

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of Lecture 4

Graphic
Presentations of Frequency Distrubutions

Histograms
Frequency Polygons

Frequency Curves

In this section we shall discuss how to present frequency distrubution graphically. Graphs present data in a two-dimensional picture. On the horizontal axis, we show the values of the variable. On the vertical axis, we mark the frequencies of the classes shown on the horizontal axis.
A frequency distrubution can be presented graphically in any of the following ways:

```
1. Histograms 2. Frequency Polygons
3. Frequency Curves 4. Ogives or Cumulative Frequency
Curves
```

Ogives

Graphic Presentations of Frequency Distrubutions

In this section we shall discuss how to present frequency distrubution graphically. Graphs present data in a two-dimensional picture. On the horizontal axis, we show the values of the variable. On the vertical axis, we mark the frequencies of the classes shown on the horizontal axis.
A frequency distrubution can be presented graphically in any of the following ways:

1. Histograms 2. Frequency Polygons
2. Frequency Curves 4. Ogives or Cumulative Frequency

Curves

Histograms

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives

A histogram is the most widely used way of presenting a given frequency distrubution graphically.

> Example 1: Draw a histogram to represent the following data: Daily wages (Rs.): 0-10 10-20 20-30 30-40 40-50 50-60 No. of Workers: $\quad 3 \quad 9 \quad 15 \quad 30 \quad 18$ Solution: On the horizontal axis, we have shown the class intervals. On the vertical axis, we have marked the frequencies of the classes shown on the horizontal axis.

Histograms

Lecture 4

GLA

University
Mathura

Dr. Manoj
Kumar

Outline of Lecture 4

Graphic
Presentations
A histogram is the most widely used way of presenting a given frequency distrubution graphically.
Example 1: Draw a histogram to represent the following data: Daily wages (Rs.): 0-10 10-20 20-30 30-40 40-50 50-60 No. of Workers: $\quad \begin{array}{lllllll} & 3 & 9 & 15 & 30 & 18 & 5\end{array}$
Solution: On the horizontal axis, we have shown the class intervals. On the vertical axis, we have marked the frequencies of the classes shown on the horizontal axis.

Histograms

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
A histogram is the most widely used way of presenting a given frequency distrubution graphically.
Example 1: Draw a histogram to represent the following data: Daily wages (Rs.): 0-10 10-20 20-30 30-40 40-50 50-60 No. of Workers: $\begin{array}{lllllll}3 & 9 & 15 & 30 & 18 & 5\end{array}$
Solution: On the horizontal axis, we have shown the class intervals. On the vertical axis, we have marked the frequencies of the classes shown on the horizontal axis.

Histogram

S

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of

Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves

Ogives

References

Fig. 1
1.jpg

Histograms

Lecture 4
GLA
University
Mathura

Dr. Manoj
Kumar

Example 2: Draw a histogram to represent the following data: Mid-Value(X): 115125135145155165
No. of Workers: $\begin{array}{llllll}36 & 8 & 7 & 4 & 2\end{array}$
Hint: If the mid-values of various classes are given in place of class intervals then these must first be converted into classes.

Fig. 20

Histograms

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives
References

Example 2: Draw a histogram to represent the following data: Mid-Value(X): 115125135145155165
No. of Workers: $\begin{array}{llllll}36 & 8 & 7 & 4 & 2\end{array}$
Hint: If the mid-values of various classes are given in place of class intervals then these must first be converted into classes.

Fig. 20

Histograms

Lecture 4
GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives
References

Example 2: Draw a histogram to represent the following data: Mid-Value(X): 115125135145155165
No. of Workers: $\begin{array}{llllll}36 & 8 & 7 & 4 & 2\end{array}$
Hint: If the mid-values of various classes are given in place of class intervals then these must first be converted into classes.

Fig. 20

Frequency Polygons

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline o Lecture 4

Graphic
Presentations of Frequency Distrubutions

Histograms
Frequency Polygons

Frequency Curves

A frequency polygon is another way of representing a given frequency distrubution in graphic form. Frequency Polygons are more suitable than histograms if we wish to compare two or more frequency distrubution.

> A frequency polygon is constructed by first drawing the histogram and then joining the modpoints of the tops of the adjacent rectangles by straight lines. The mid points of both ends to the horizontal axis, resulting in a polygon. A frequency polygon can also be constructed without first drawing the histogram. The frequency polygon is constructed by plotting each class frequency by drawing a dot (.) against its class mark and then connecting the successive dots with straight lines.

Frequency Polygons

GLA
University
Mathura

Dr. Manoj Kumar

Outline o Lecture 4

Graphic
Presentations of Frequency Distrubutions

A frequency polygon is another way of representing a given frequency distrubution in graphic form. Frequency Polygons are more suitable than histograms if we wish to compare two or more frequency distrubution.
A frequency polygon is constructed by first drawing the histogram and then joining the modpoints of the tops of the adjacent rectangles by straight lines. The mid points of both ends to the horizontal axis, resulting in a polygon.
A frequency polygon can also be constructed without first
drawing the histogram. The frequency polygon is constructed
by plotting each class frequency by drawing a dot (.) against its class mark and then connecting the successive dots with straight lines.

Frequency Polygons

GLA
University
Mathura

Dr. Manoj Kumar

Outline of Lecture 4

Graphic Presentations of Frequency Distrubutions

Histograms
Frequency Polygons

A frequency polygon is another way of representing a given frequency distrubution in graphic form. Frequency Polygons are more suitable than histograms if we wish to compare two or more frequency distrubution.
A frequency polygon is constructed by first drawing the histogram and then joining the modpoints of the tops of the adjacent rectangles by straight lines. The mid points of both ends to the horizontal axis, resulting in a polygon. A frequency polygon can also be constructed without first drawing the histogram. The frequency polygon is constructed by plotting each class frequency by drawing a dot (.) against its class mark and then connecting the successive dots with straight lines.

Frequency Polygons

Lecture 4

GLA

University
Mathura

Dr. Manoj
Kumar

Outline of Lecture 4

Graphic
Presentations of Frequency Distrubutions

Histograms
Frequency Polygons

Frequency Curves

Example 3: Draw a frequency polygon for the following distrubution of marks obtained by 50 students in an examination:
Marks Obtained: $\quad 10-20$ 20-30 30-40 40-50 50-60 60-70 70-80

No. of Students: 2	3	7	13	11	9	4

Marks Obtained: 80-90
No. of Students: 01
Solution: To construct the frequency polygon, we mark the frequency on the vertical axis and the values of the variable (i.e., marks) on the horizontal axis. Next, we construct the histogram representing the given frequency distribution and then join the mid points of the tops of the adjacent rectangles with straights lines to form a polygon.

Frequency Polygons

GLA
University
Mathura

Dr. Manoj Kumar

Outline of Lecture 4

Graphic
Presentations of Frequency Distrubutions

Histograms
Frequency Polygons

Example 3: Draw a frequency polygon for the following distrubution of marks obtained by 50 students in an examination:
Marks Obtained: $\quad 10-20$ 20-30 30-40 40-50 50-60 60-70 70-80
No. of Students: 2
$\begin{array}{llll}3 & 7 & 13 & 11\end{array}$
9
Marks Obtained: 80-90
No. of Students: 01
Solution: To construct the frequency polygon, we mark the frequency on the vertical axis and the values of the variable (i.e., marks) on the horizontal axis. Next, we construct the histogram representing the given frequency distribution and then join the mid points of the tops of the adjacent rectangles with straights lines to form a polygon.

Frequency Polygons

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives
References

3.jpg

Frequency Polygons

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves

Example 4: Draw a frequency polygon for the following distrubution:
Class Interval: 15-25 25-35 35-45 45-55 55-65 65-75 Frequency: $\begin{array}{lllllll}10 & 16 & 18 & 15 & 13 & 4\end{array}$
Here the frequency polygon is constructed by plotting each class frequency by drawing a dot (.) against its class mark and the connecting the succesive dots with straights lines.

Frequency Polygons

Lecture 4

GLA

University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Example 4: Draw a frequency polygon for the following distrubution:
Class Interval: 15-25 25-35 35-45 45-55 55-65 65-75 Frequency: $\begin{array}{lllllll}10 & 16 & 18 & 15 & 13 & 4\end{array}$
Here the frequency polygon is constructed by plotting each class frequency by drawing a dot (.) against its class mark and the connecting the succesive dots with straights lines.

Frequency Polygons

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves

4.jpg ${ }^{\text {les }}$

Fig. 4

Ogives

References

Frequency Curves

If the class intervals in a distribution are continuously reduced in size and if the no. of items in the distribution is continuously increased, the frequency polygon will resemble a smooth curve, called a smoothed frequency curve, or simply a frequency curve.
A frequency curves can be obtained from the histogram by joining the midpoints of the tops of the adjacent rectangles by a free hand.

Frequency Curves

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency Curves

Example 5: Draw a frequency curves for the following distrubution of marks obtained by 50 students in an examination:
Marks Obtained: $\quad 10-20$ 20-30 30-40 40-50 50-60 60-70 70-80
$\begin{array}{lllllll}\text { No. of Students: } 2 & 3 & 7 & 13 & 11 & 9 & 4\end{array}$ Marks Obtained: 80-90 No. of Students: 01

An Ogive (pronounced oh-jive) is a graphic presentation of a cumulative frequency distribution. Since a cumulative frequency distribution can be of less than or more than type therefore there are two types of ogives viz., less than ogives or more than ogives.
Less than ogives: An ogive assocaited with a less than cumulative frequency is called less than ogives. A less than ogives is constucted by plotting points determined by the upper class boundary and the cumulative frequency of the individual classes and then connected the succesive points by a freehand curve. A less than ogive will be ascending.

GLA
University
Mathura

Dr. Manoj Kumar

An Ogive (pronounced oh-jive) is a graphic presentation of a cumulative frequency distribution. Since a cumulative frequency distribution can be of less than or more than type therefore there are two types of ogives viz., less than ogives or more than ogives.
Less than ogives: An ogive assocaited with a less than cumulative frequency is called less than ogives. A less than ogives is constucted by plotting points determined by the upper class boundary and the cumulative frequency of the individual classes and then connected the succesive points by a freehand curve. A less than ogive will be ascending.

Ogives

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives

More than ogives: An ogive assocaited with a more than cumulative frequency is called more than ogives. A more than ogives is constucted by plotting points determined by the lower class boundary and the cumulative frequency of the individual classes and then connected the succesive points by a freehand curve. A more than ogive will be descending.

Example 6: The following data shows the marks obtained by 100 students in an examination:
Marks Obtained: $\quad 0-10$ 10-20 20-30 30-40 40-50 50-60
No. of Students: $10 \quad 9 \quad 25 \quad 30 \quad 10 \quad 16$
(i) Construct a less than cumulative frequency distribution for the given data.
(ii) Construct a less than ogives of the cumulative frequency distribution of the given data.

Ogives

Lecture 4

```
GLA
```

University
Mathura

Dr. Manoj
Kumar

Outline of Lecture 4

Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives

SOIIIOK (i) LESS THAN CUMULATIVE FREQUENCY DISTRIBUTION

Marks (Frequency)	No. of Students	Marks	No. of Students (Cumulative Frequency)
$0-10$	10	Less than 10	10
$10-20$	9	Less than 20	19
$20-30$	25	Less than 30	44
$30-40$	30	Less than 40	74
$40-50$	10	Less than 50	84
$50-60$	16	Less than 60	100

(ii) The "less than" ogive for the given data is shown in Fig. 2.10.

Fig. 2.10

6.jpg

Ogives

Lecture 4
GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Example 7: Given below is the distribution of weights of a group of 60 students in a class:
Weights (in kg): $\quad 30-34$ 35-39 40-44 45-49 50-54 55-59
No. of Students: $03 \quad 5 \quad 12 \quad 18 \quad 14$
Weights (in kg): 60-64
No. of Students: 02
Draw a more than ogive for the above data.

Ogives

Lecture 4
GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives
References
soumen A "more than" ogive is determined by the lower class in frequency of the individual classes.

MORE THAN CUMULATIVE FREQUENCY DISTRIBUTION

Weight (in kg) (Class Boundary)	No. of Students	Weight	No. of Students (Cumulative Frequency)
$29.5-34.5$	3	More than 29.5	60
$34.5-39.5$	5	More than 34.5	57
$39.5-44.5$	12	More than 39.5	52
$445-49.5$	18	More than 44.5	40
$49.5-54.5$	14	More than 49.5	22
$54.5-59.5$	6	More than 54.5	8
$59.5-64.5$	2	More than 59.5	2

The "more than" ogive for the given data is shown in Fig. 2.11.

bibliography

Lecture 4

GLA
University
Mathura

Dr. Manoj
Kumar

Outline of
Lecture 4
Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogives
References

El J.K. Thukral, Business Statistics, Taxmann Publications Pvt. Ltd.
S.C. Gupta and V.K. Kapoor, Fundamentals of Statistics

冨 K.P. Dhamu and K.Ramamoorthy, Fundamentals of Agricultural Statistics, Scientific Publishers (India), (2018).

Thanks !!!

Graphic
Presentations
of Frequency
Distrubutions
Histograms
Frequency
Polygons
Frequency
Curves
Ogive:
Reference:

