

Introduction

Design of machine elements is concerned with the physical realization of a machine components as an output for a given problem with safe fail, economy and other considerations.

For the first time you will link the calculations with a practical design expresses in drawings.

This course majorly focuses on

- Recognizing and defining open ended engineering design problems
- Generating creative concepts and solutions
- Project planning
- Iterative Decision making for optimum design
- Modeling and analysis

Course Outline		
	Semester V Credits: 03	
Module	Content	Teaching Hours
I	 Introduction: Mechanical Engineering Design, Design considerations, Standards in Design, Material Selection, Modern Design Approaches. Design Against Static Load: Modes of Failure, Factor of Safety, Theories of Failure. Design Against Fluctuating Loads: Cyclic Stresses, Fatigue and Endurance Limit, Stress Concentration Factor, Design for Finite and Infinite Life, Soderberg, Goodman Criteria. 	14
II	 Design of Riveted Joints: Types of Riveted Joints, Failure of Riveted Joint, Efficiency of Riveted Joint, Design of Boiler Joints, Eccentric Loaded Riveted Joint. Design of Threaded Joint: Design of Bolted Joint, Eccentrically Loaded Bolted Joint. Design of Welded Joints- Stresses in Butt and Fillet Welds, Eccentrically Loaded Joint. Shafts: Cause of Failure in Shafts, Materials for Shaft, Design of Shafts, Shafts Subjected to Fatigue Loads. 	14
ш	 Keys and Couplings: Types of Keys, Splines, Design of Square & Flat Keys, Couplings- Design of Rigid and Flexible Couplings. Mechanical Springs: Material for Helical Springs, Design of Helical Springs Subjected to Static and Fatigue Loading, Design of Leaf Spring. Power Screws: Forms of Threads, Multiple Threads, Efficiency of Square Threads, Trapezoidal Threads, Stresses in Screws, Design of Screw Jack. 	12

Resources **Text Books:** • Bhandari V.B., "Design of Machine Elements", Tata McGraw Hill Co. **Reference Books:** • Shigely Joseph E., "Mechanical Engineering Design", McGraw Hill Publications. • Valance Alex and Doughtie VI, "Design of Machine Members", McGraw Hill Co. • Spott M.F., "Machine design", Prentice Hall India. • Maleev and Hartman, "Machine Design", Mc Graw Hill.

- Students will work in teams to complete a Design Project.
- Students will take one midterm exam.
- Students will complete 10 tutorial assignments.
- Students will take 5 or more surprise quizzes randomly distributed during the lecture hours throughout the semesters.

No prior information regarding the date or the material for quizzes shall be given.

Instructor Contact Details

Rajkumar Sharma (Asst. Prof.)

Cabin: 301 (AB 3) Phone: 9997008922

e-mail: raj.sharma@gla.ac.in

G.L.A. UNIVERSITY, MATHURA

 Almost everyone is involved in design, in one way or the other, in our daily lives because problems are posed and they need to be solved.

G.L.A. UNIVERSITY, MATHURA

Rational design

 Based on determining the stresses and strains of components and thereby deciding their dimensions

Industrial design

 Based on industrial considerations and norms viz. market survey, external look, production facilities, low cost, use of existing standard products.

G.L.A. UNIVERSITY, MATHURA

Empirical design

- Based on empirical formulae which in turn is based on experience and experiments
- eg. When we tighten a nut on a bolt, the force exerted or the stresses induced can not be determine exactly but experience shows that the tightening force may be given by P=2840d where, d is the bolt diameter in mm and P is the applied force in N.

There is no mathematical backing of this equation but it is based on observations and experience

Design Requirements OR Design considerations

The design of a component or system may be influenced by a number of requirements. If a requirement affects design, it is called a design consideration. For example, if the ability to carry large loads without failure is important, we say that strength is a design consideration. Most product development projects involve a number of design considerations:

- Strength/stress
- Cost
- Distortion/stiffness - Processing requirements
- Wear
- Weight - Life
- Corrosion - Safety
- Noise
- Reliability
- Friction
- Usability/utility
- Aesthetic considerations
- Shape
- Environmental protection Size

- Thermal properties
- Surface finish
- Lubrication
- Marketability
- Maintenance
- Volume
- Recyclability

