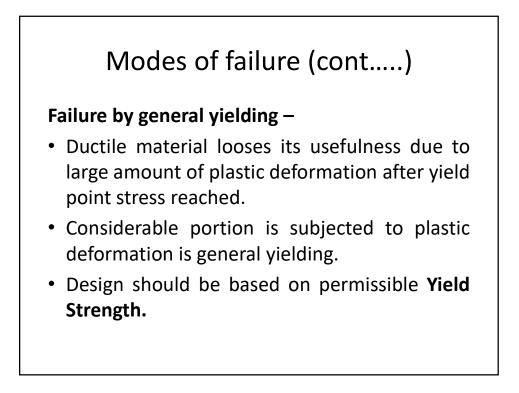
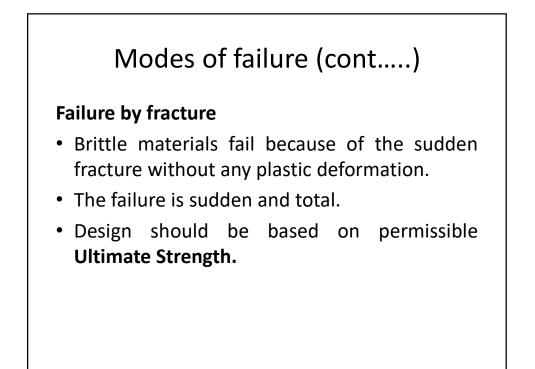


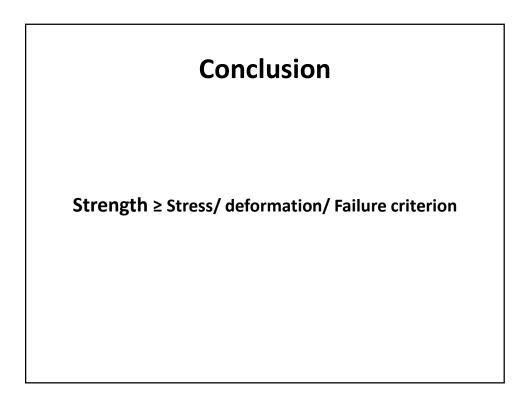
Modes of failure

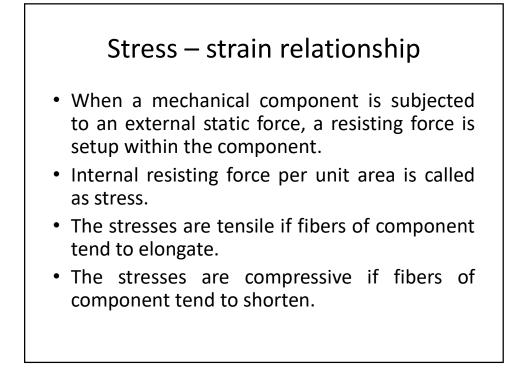
Failure by elastic deflection -

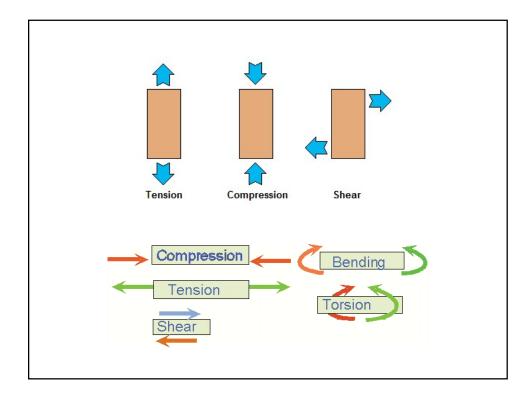
- Ex. Transmission shafts for gears.
- Lateral or torsional rigidity is design criterion.
- Elastic deflection also results in buckling of columns or vibrations.
- Design should be based on permissible lateral and torsional deflections.

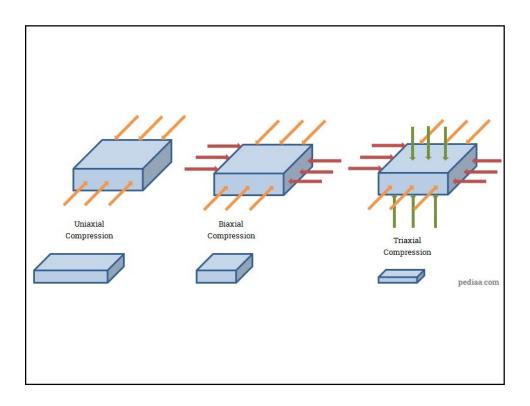


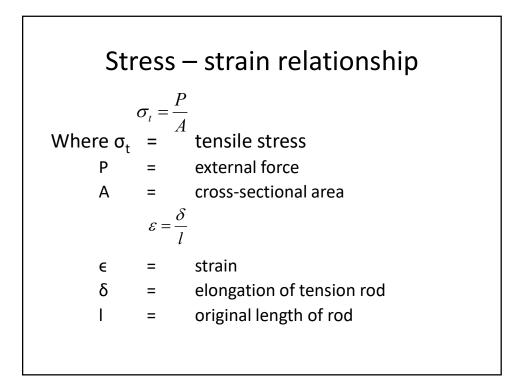


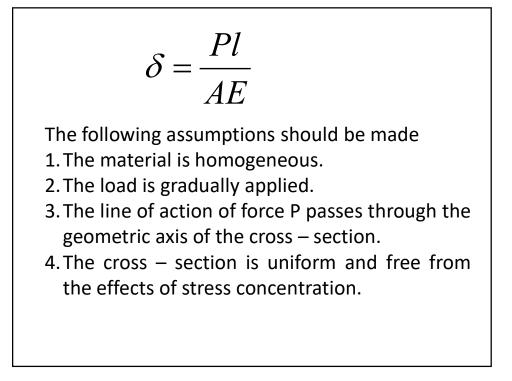


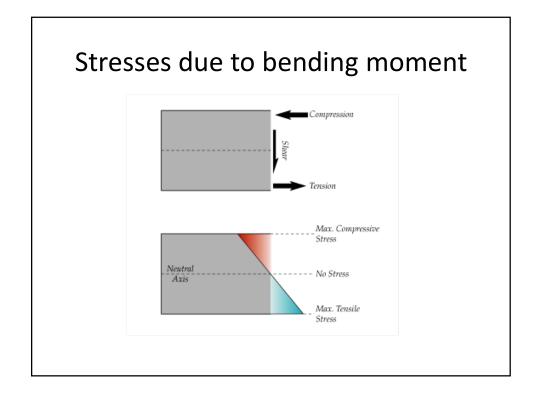


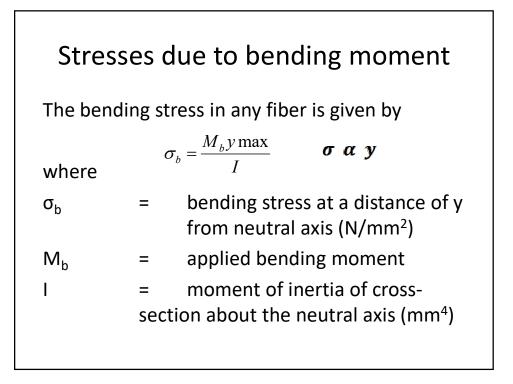


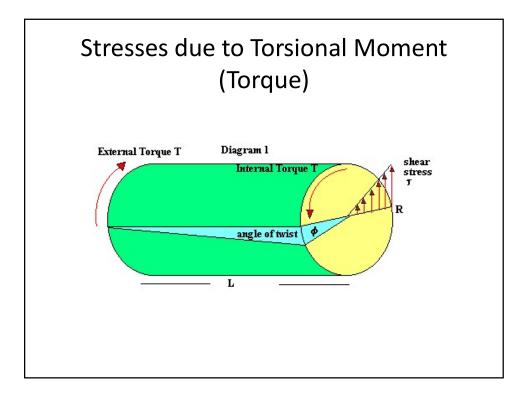








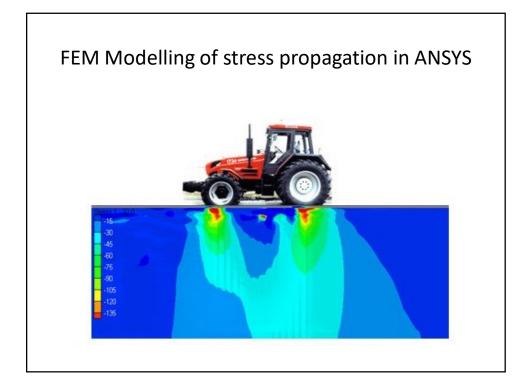


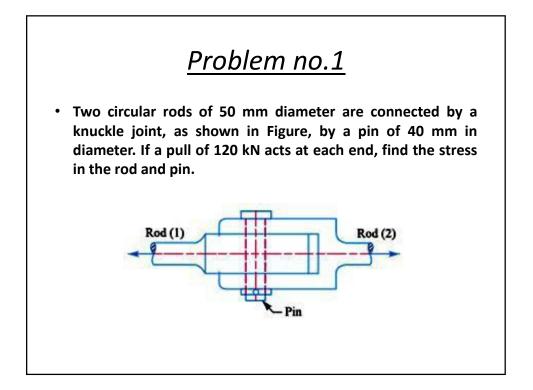


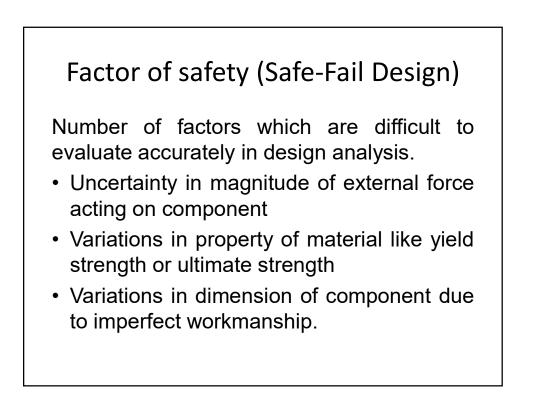
Stresses due to torsional moment

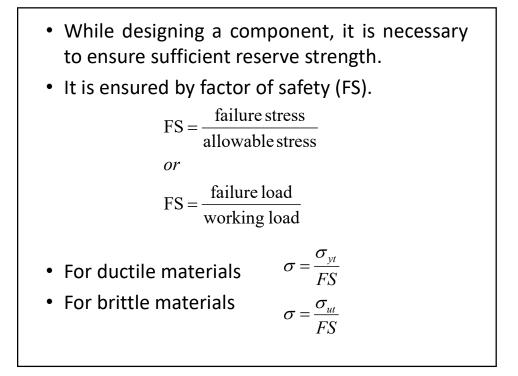
The internal stresses, which are induced resist the action of twist, are called torsional shear stresses.

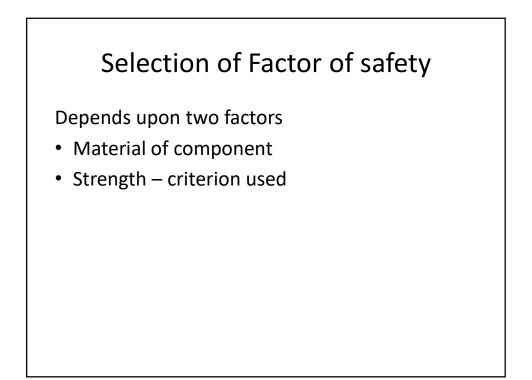
$$\tau = \frac{M_t r}{J}$$

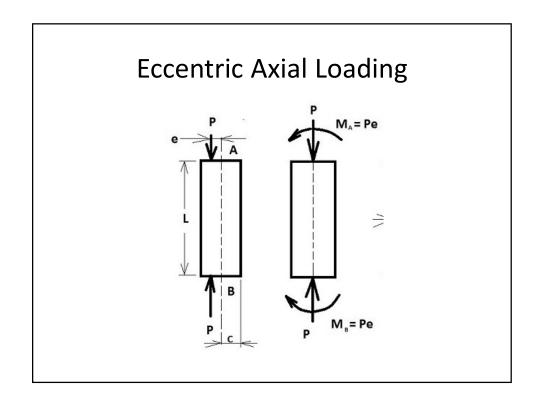


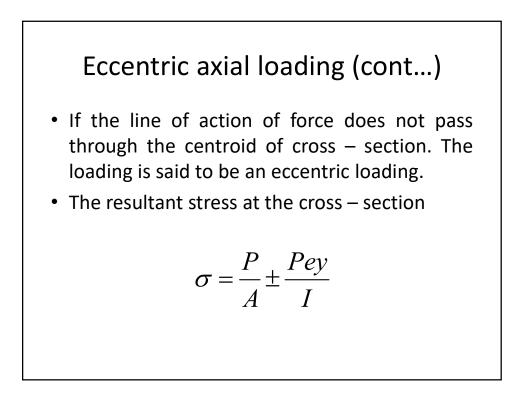






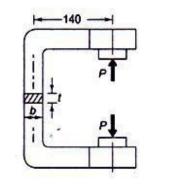


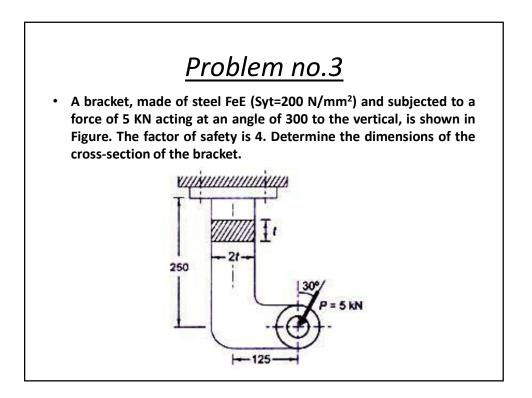




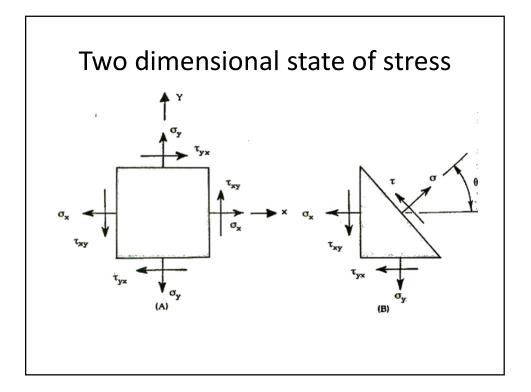
Problem no.2

Figure shows a C-clamp, which carries a load of 25 KN. The cross-section of the clamp is rectangular and the ratio of the width to thickness (b/t) is 2:1. The clamp is made of cast steel of grade 20-40 (Sut=400 N/mm²) and the factor of safety is 4. Determine the dimensions of the cross-section of the clamp.





- There are two types of stresses Normal stresses (σ_x , σ_y , σ_z) and shear stresses (τ_{xy} , τ_{yx}).
- Predicting failure in members subjected to uniaxial stress is simple and straight-forward.
- But the problem of predicting the failure stresses for members subjected to **bi-axial**, tri-axial stresses combination or Of and shear normal stresses (e.g. а is much transmission shaft) more complicated. For design, it is necessary to



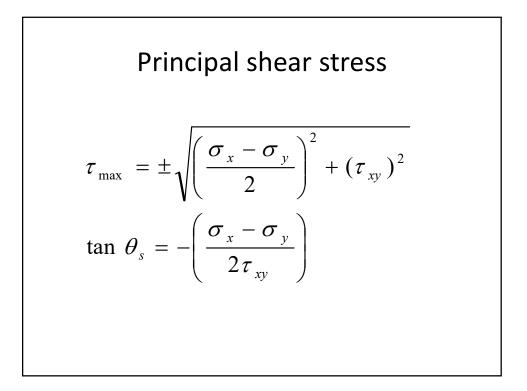
$$\sigma = \left(\frac{\sigma_x + \sigma_y}{2}\right) + \left(\frac{\sigma_x - \sigma_y}{2}\right) \cos 2\theta + \tau_{xy} \sin 2\theta$$

and
$$\tau = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\tan 2\theta = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Principal stresses
$$\sigma_1 = \left(\frac{\sigma_x + \sigma_y}{2}\right) + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$$

$$\sigma_2 = \left(\frac{\sigma_x + \sigma_y}{2}\right) - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$$



Theories of failure (Application of principal stresses)

The principal theories of failure for a member subjected to bi-axial stress are as follows:

- 1. Maximum principal (or normal) stress theory (Rankine's theory).
- 2. Maximum shear stress theory (Guest's or Tresca's theory).
- 3. Maximum principal (or normal) strain theory (Saint Venant theory).
- 4. Maximum strain energy theory (Haigh's theory).
- 5. Maximum distortion energy theory (Hencky and Von Mises theory)

Maximum principal or normal stress theory (Rankine's theory)

- The failure or yielding occurs at a point in a member when the maximum principal or normal stress in a bi-axial stress system reaches the limiting strength of the material in a simple tension test.
- The limiting strength for ductile materials is yield point stress and for brittle materials the limiting strength is ultimate stress.

Maximum Principal or Normal Stress Theory (Rankine's Theory)

$$\sigma_{t1} = \frac{\sigma_{yt}}{FS}$$
, for ductile materials

$$\sigma_{i1} = \frac{\sigma_u}{FS}$$
, for brittle materials

 σ_{yt} = Yield point stress in tension as determined from simple tension test.

 σ_u = Ultimate stress.

- It ignores the possibility of failure due to shearing stress, therefore it is not used for ductile materials.
- However, for brittle materials which are relatively strong in shear but weak in tension or compression, this theory is generally used.

Maximum Shear Stress Theory (Guest's or Tresca's Theory)

$$\tau_{\max} = \frac{\tau_{yt}}{FS}$$

where τ_{max} = maximum shear stress in a bi - axial stress system τ_{yt} = Shear stress at yield point as determined from simple tension test Since the shear stress at yield point in a simple tension test

Since the shear stress at yield point in a simple tension test is equal to one-half the yield stress in tension

$$\tau_{\max} = \frac{\sigma_{yt}}{2 \times FS}$$

This theory is mostly used for designing members of ductile materials.

Maximum Distortion Energy Theory (Hencky and Von Mises Theory)

• The failure or yielding occurs at a point in a member when the distortion strain energy (also called shear strain energy) per unit volume in a bi-axial stress system reaches the limiting distortion energy (i.e. distortion energy at yield point) per unit volume as determined from a simple tension test. The maximum distortion energy theory for yielding is

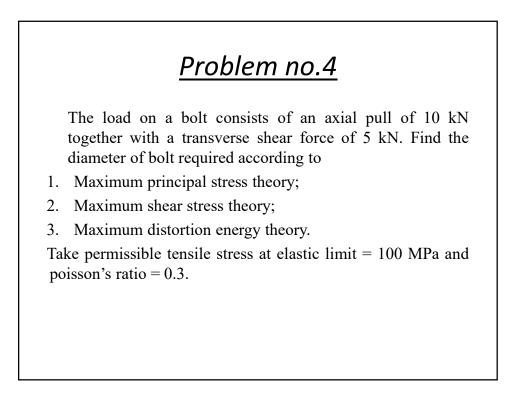
(σ_{t1})² + (σ_{t2})² - σ_{t1} × σ_{t2} = (σ_{yt}/FS)²

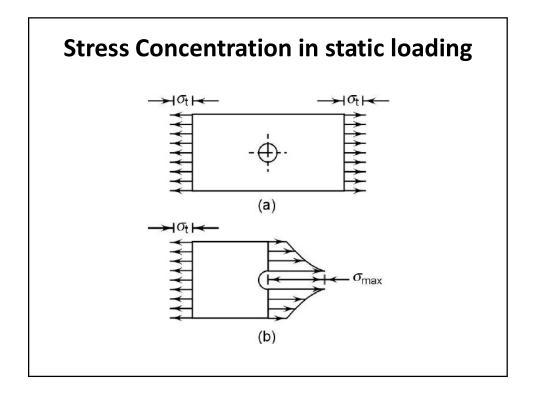
This theory is mostly used for ductile materials.

In case of combined bending and torsional moments, there is a normal stress σ_x accompanied by the torsional shear stress τ_{xv} .

Substituting $\sigma_y = \sigma_z = \tau_{yz} = \tau_{zx} = 0$ in Eq.

$$\sigma = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$$





Stress Concentration Factor (K_t)

Elementary equations:

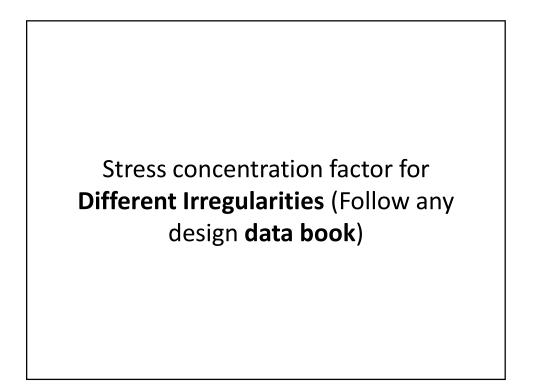
$$\sigma_t = \frac{P}{A} \qquad \sigma_b = \frac{M_b y}{I} \qquad \tau = \frac{M_t r}{J}$$

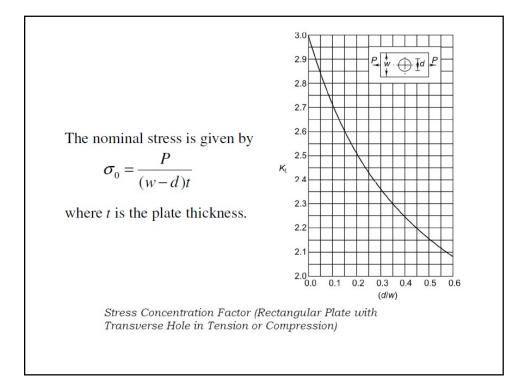
Stress concentration is defined as the localization of high stresses due to **the irregularities** presents in the component and **abrupt changes** of the cross section.

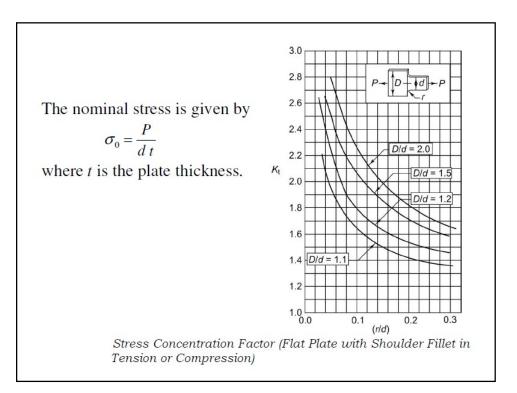
Stress concentration factor (K_t) is defined as

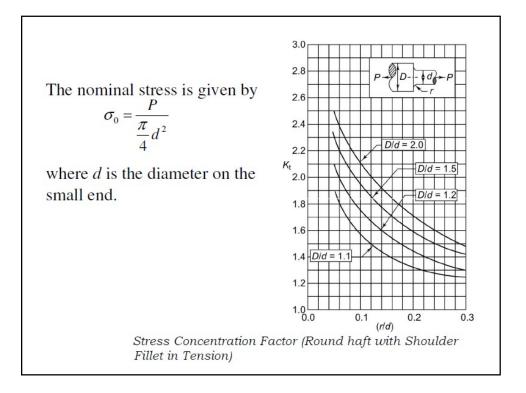
highest value of actual stress near discontinuity

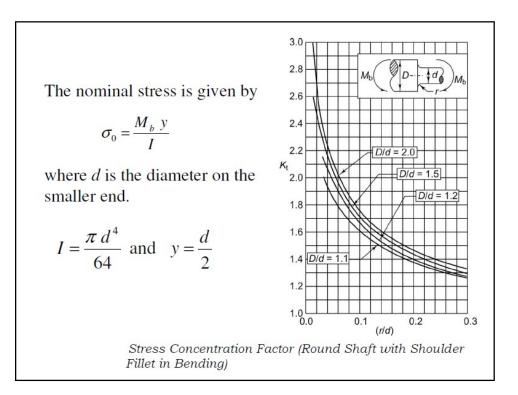
 $K_t = \frac{1}{\text{nominal stresses obtained by elementary equations for minimal cross - section}}$

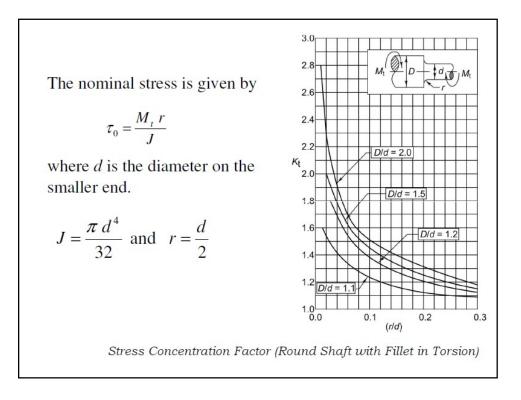












24

