- Assertion (A): A demultiplexer can be used as a decoder.
 Reason (R): A demultiplexer can be built by using AND gates only.
 - A. Both A and R are correct and R is correct explanation of A
 - B. Both A and R are correct but R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true
- 2. The number of unused states in a 4 bit Johnson counter is
 - **A.** 2
 - **B.** 4
 - **C.** 8
 - **D.** 12
- 3. A universal shift register can shift
 - A. from left to right
 - B. from right to left
 - C. both from left to right and right to left
 - **D.** none of the above
- 4. In the given figure, A = B = 1 and C = D = 0. Then Y =

- **A.** 1
- **B.** 0
- C. either 1 or 0
- D. indeterminate

- Assertion (A): CMOS devices have very high speed.
 Reason (R): CMOS devices have very small physical size and simple geometry.
 - A. Both A and R are correct and R is correct explanation of A
 - B. Both A and R are correct but R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true
- 6. Calculate the output voltage for this circuit when $V_1 = 2.5$ V and $V_2 = 2.25$ V.

- **A.** −5.25 V
- **B.** 2.5 V
- **C.** 2.25 V
- **D.** 5.25 V
- 7. Refer to this figure. The value of V_{BC} is:

- A. 9.2 V
- **B.** 9.9 V
- **C.** –9.9 V
- **D.** -9.2 V
- 8. A rectangular waveguide, in dominant TE mode, has dimensions 10 cm x 15 cm. The cut off frequency is
 - **A.** 10 GHz
 - **B.** 1 GHz
 - **C.** 15 GHz
 - **D.** 25 GHz
- 9. The following circuit can be represented as :

10. The star equivalent $C_1 C_2$, C_3 of the delta network is respectively

A.
$$\frac{C_BC_C + C_AC_C + C_BC_A}{C_A}, \frac{C_BC_C + C_AC_C + C_BC_A}{C_B}, \frac{C_BC_C + C_AC_C + C_BC_A}{C_C}$$

B.
$$\frac{C_A C_B}{C_A + C_B + C_C}$$
, $\frac{C_B C_C}{C_A + C_B + C_C}$, $\frac{C_C C_A}{C_A + C_B + C_C}$

C.
$$\frac{C_A + C_B + C_C}{C_A C_B}$$
, $\frac{C_A + C_B + C_C}{C_B C_C}$, $\frac{C_A + C_B + C_C}{C_A C_C}$

D.
$$\frac{C_A}{C_A C_B + C_B C_C + C_C C_A} \stackrel{\prime}{,} \frac{C_B}{C_A C_B + C_B C_C + C_C C_A} \stackrel{\prime}{,} \frac{C_C}{C_A C_B + C_B C_C + C_C C_A}$$

- 11. In amplitude modulation, carrier signals A $\cos \omega t$ has its amplitude A modulated in proportion with message bearing (low frequency) signal m(t). The magnitude of m(t) is
 - chosen to be _____.
 - A. less than 1
 - **B.** less than or equal to 1
 - C. more than 1
 - **D.** none of these
- 12. An 8 level encoding scheme is used in a PCM system of 10 kHz channel BW. The channel capacity is
 - **A.** 80 *kbps*
 - **B.** 60 *kbps*
 - **C.** 30 *kbps*
 - **D.** 18 *kbps*
- **13.** For static electric and magnetic fields in an homogenous source-free medium, which of the following represents the correct form of Maxwell's equations?

A.
$$\Delta . \mathbf{E} = \mathbf{0}$$

 $\Delta \mathbf{x} \mathbf{B} = \mathbf{0}$
B. $\Delta . \mathbf{E} = \mathbf{0}$

 $\Delta B = 0$

- C. $\Delta x E = 0$ $\Delta x B = 0$ D. $\Delta x E = 0$ $\Delta .B = 0$
- 14. A material has conductivity of 10^5 mho/m and permeability of 4 $\times 10^{-7}$ H/m The skin depth at 9 GHz is
 - **A.** 1.678 μm
 - **B.** 26 μm
 - **C.** 17 μm
 - **D.** 32.32 μm
- **15.** A fair coin is tossed independently four times. The probability of the event "the number of time heads shown up is more than the number of times tails shown up" is
 - A. $\frac{1}{16}$ B. $\frac{1}{8}$ C. $\frac{1}{4}$ D. $\frac{5}{16}$

16. Find Y- parameters

 $T(s) = \frac{9}{s^2 + 4s + 9}$

17. For a second-order system with the closed-loop transfer function The settling time for 2-percent band, in seconds, is :

- **A.** 1.5
- **B.** 2.0
- **C.** 3.0
- **D.** 4.0

 $G(s)H(s) = \frac{K(s+1)}{s(s+2)(s^2+2s+2)}$ has

18. An open loop transfer function is given by

- A. one zero at ∞
- **B.** two zeros at ∞
- C. three zeros at ∞
- **D.** four zeros at ∞
- **19.** If the memory chip size is 256 x 1 bits, then the number of chips required to make up 1 kB (1024) bytes of memory is
 - **A.** 32
 - **B.** 24
 - **C.** 12
 - **D.** 8

20. What about the stability of system in $H(z) = \frac{z(3z-4)}{(z-0.4)(z-2)}$

- A. system is stable
- **B.** unstable
- C. stable at 0.4
- **D.** cant say
- **21.** Which one is a causal system?
 - **A.** y(n) = 3x[n] 2x[n 1]
 - **B.** y(n) = 3x[n] + 2x[n+1]

- C. y(n) = 3x[n+1] + 2x[n-1]
- **D.** y(n) = 3x[n+1] 2x[n-1] + x[n]
- **22.** A silicon (PN) junction at a temperature of 20°C has a reverse saturation current of 10 p to Ampere. The reverse saturation current at 40°C for the same bias is approximately.
 - A. 30 pA
 - **B.** 40 pA
 - **C.** 50 pA
 - **D.** 60 pA
- 23. For the system in the given figure. The transfer function C(s)/R(s) is

- **A.** $G_1 + G_2 + 1$
- **B.** $G_1 G_2 + 1$
- **C.** $G_1 G_2 + G_2 + 1$
- **D.** $G_1 G_2 + G_1 + 1$

24. Propagation delay time, t_{PLH}, is measured from the ______.

- A. triggering edge of the clock pulse to the LOW-to-HIGH transition of the output
- **B.** triggering edge of the clock pulse to the HIGH-to-LOW transition of the output
- C. preset input to the LOW-to-HIGH transition of the output
- **D.** clear input to the HIGH-to-LOW transition of the output
- 25. In an n-channel JFET, what will happen at the pinch-off voltage?

A. the value of V_{DS} at which further increases in V_{DS} will cause no further increase in I_D

B. the value of V_{GS} at which further decreases in V_{GS} will cause no further increases in ID

C. the value of V_{DG} at which further decreases in V_{DG} will cause no further

increases in I_D

D. the value of V_{DS} at which further increases in V_{GS} will cause no further increases in I_D

26. In a J-K FF we have J = Q and K = 1. Assuming the FF was initially cleared and then clocked for 6 pulses, the sequence at the Q output will be

27. For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is

3000	MVI	А,	45 H
3002	MOV	в,	А
3003	STC		
3004	CMC		
3005	RAR		
3006	XRA	В	

- **A.** 00H
- **B.** 45H
- **C.** 67H
- **D.** E7H

- **28.** How many address bits are needed to select all memory locations in the 2118 16K × 1 RAM?
 - **A.** 8
 - **B.** 10
 - **C.** 14
 - **D.** 16

29. Convert the following SOP expression to an equivalent POS expression.

 $A B C + A \overline{B} \overline{C} + A \overline{B} C + A B \overline{C} + \overline{A} \overline{B} C$

- A. $(\overline{A} + \overline{B} + \overline{C})(A + \overline{B} + C)(A + \overline{B} + C)$
- **B.** $(A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})$
- C. $(\overline{A} + \overline{B} + \overline{C})(\underline{A} + B + \overline{C})(\overline{A} + B + C)$
- **D.** $(A + B + C)(\overline{A} + B + \overline{C})(A + \overline{B} + C)$
- **30.** Calculate the resistivity of *n*-type semiconductor from the following data, Density of holes = 5×10^{12} cm⁻³. Density of electrons = 8×10^{13} cm⁻³, mobility of conduction electron = 2.3×10^4 cm²/V-sec and mobility of holes = 100 cm²/V-sec.
 - **A.** 0.43 Ω-m
 - **B.** 0.34 Ω-m
 - **C.** 0.42 Ω-m
 - **D.** 0.24 Ω-m

31. In all metals

- A. conductivity decreases with increase in temperature
- **B.** current flow by electrons as well as by holes
- C. resistivity decreases with increase in temperature
- **D.** the gap between valence and conduction bands is small
- **32.** Assertion (A): Two transistors one *n-p-n* and the other *p-n-p* are identical in all respects (doping, construction, shape, size). The *n-p-n* transistor will have better frequency response.

Reason (R): The electron mobility is higher than hole mobility.

- A. Both A and R are true and R is correct explanation of A
- B. Both A and R are true but R is not a correct explanation of A
- C. A is true but R is false
- **D.** A is false but R is true

33. Which of the following elements act as donor impurities?

Gold Phosphorus Boron Antimony Arsenic Indium

Select the answer using the following codes :

- A. 1, 2 and 3
 B. 1, 2, 4, and 6
 C. 3, 4, 5 and 6
 D. 2, 4 and 5
- 34. The open loop transfer function of a unity feedback control system is given

 $G(s) = \frac{1}{s(1 + sT_1)(1 + sT_2)}$ as are respectively. The phase cross over frequency and the gain margin

A.
$$\frac{1}{\sqrt{T_1T_2}}$$
 and $\frac{T_1 + T_2}{T_1T_2}$
T₁ + T₂

- **B**₂ $\sqrt{T_1T_2}$ and $\frac{T_1+T_2}{T_1T_2}$
- $C_{\underline{\bullet}} = \frac{1}{\sqrt{T_1 T_2}} and \frac{T_1 T_2}{T_1 + T_2}$

D₁
$$\sqrt{T_1T_2}$$
 and $\frac{T_1T_2}{T_1+T_2}$

35. Find current i.

- **A.** 4/5 A
- **B.** 5/4 A
- **C.** 1.23 A
- **D.** 1.32 A

36. The circuit I in figure is

- **A.** 1 mA
- **B.** 4 mA
- **C.** 8 mA
- **D.** 10 mA

37. For dielectric to dielectric interface with surface charge density, which of the following statements are true?

$$D_{n2} - D_{n1} = \Box_s$$

$$E_{t1} = E_{t2}$$

$$E_{n1} = E_{n2}$$

$$\frac{D_{t1}}{\varepsilon_{01}} = \frac{D_{t2}}{\varepsilon_{02}}$$
A. 1, 2 and 3
B. 1, 2 and 4
C. 1, 2 only
D. 1, 4 only

38. The early effect in a BJT is caused by

- A. fast turn on
- B. fast turn off
- C. large collector base reverse bias
- **D.** large emitter base forward bias

39. In an integrated circuit the SiO_2 layers provide

- A. electrical connection to external Ckt.
- B. physical strength
- C. iso lation
- C. conducting path.

40. Which impurity atom will give p type semiconductor when added to intrinsic semiconductor?

- A. Phosphorus
- B. Boron
- C. Arsenic
- **D.** Antimony

- 41. Zener breakdown occurs
 - A. due to rapture of covalent band
 - **B.** mostly in germanium junctions
 - C. in lightly doped junctions
 - D. due to thermally generated minority carriers

42. In modern MOSFETS, the material used for the gate is

- A. high purity silicon
- **B.** high purity silica
- C. heavily doped polycrystalline silicon
- **D.** epitaxial grown silicon
- 43. Consider the following statements.

Etching

Exposure to UV radiation

Stripping

Developing

After a wafer has been coated with photo resist the correct sequence of these steps in photolithography is

A. 2, 4, 3, 1
B. 2, 4, 1, 3
C. 4, 2, 1, 3
D. 3, 2, 3, 1

44. Peak inverse voltage will be highest for

- A. half wave rectifier
- B. full wave rectifier
- C. bridge rectifier
- **D.** three phase full wave rectifier

45. Figure shows characteristics curves for bipolar transistor. These curves are

- A. output characteristics of n-p-n transistor (common base)
- **B.** output characteristics of p-n-p transistor (common base)
- **C.** output characteristics of *n*-*p*-*n* transistor (common emitter)
- **D.** output characteristics of *p*-*n*-*p* transistor (common emitter)